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a b s t r a c t

The process of human occupation in Brazilian Amazonia is heterogeneous in space and time.

The goal of this paper is to explore intra-regional differences in land-use determining fac-

tors. We built spatial regression models to assess the determining factors of deforestation,

pasture, temporary and permanent agriculture in four space partitions: the whole Ama-

zon; the Densely Populated Arch (southern and eastern parts of the Amazon), where most

deforestation has occurred; Central Amazon, where the new frontiers are located; and Occi-

dental Amazon, still mostly undisturbed. Our land-use data combines deforestation maps

derived from remote sensing and 1996 agricultural census. We compiled a spatially explicit

database with 50 socio-economic and environmental potential factors using 25 km × 25 km

regular cells. Our results show that the concentrated deforestation pattern in the Arch is

related to the diffusive nature of land-use change, proximity to urban centers and roads,

reinforced by the higher connectivity to the more developed parts of Brazil and more favor-

able climatic conditions, expressed as intensity of the dry season. Distance to urban centers

was used as a proxy of accessibility to local markets, and was found to be as important as

distance to roads in most models. However, distance to roads and to urban centers does not

explain intra-regional differences, which were captured by other factors, such as connection

to national markets and more favorable climatic conditions in the Arch. Agrarian structure

results show that areas in which the land structure is dominated by large and medium

farms have a higher impact on deforestation and pasture extent. Temporary and perma-

nent agriculture patterns were concentrated in areas where small farms are dominant. We

conclude that the heterogeneous occupation patterns of the Amazon can only be explained
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when combining several factors related to the organization of the productive systems, such

as favorable environmental conditions and access to local and national markets. Agrarian

structure and land-use analysis reinforced this conclusion, indicating the heterogeneity of

land-use systems by type of actor, and the influence of the agrarian structure on land-use

patterns across the region.
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1. Introduction

The Brazilian Amazonia rain forest covers an area of4

4 million km2. Due to the intense human occupation pro-5

cess in the last decades, about 16% of the original forest has6

already been removed, and the current rates of deforestation7

are still very high (INPE, 2005). Growing demand for cattle8

raising and the potential expansion of mechanized crops in9

forest areas are the main threats to the forest (Margulis,10

2004). The enormous potential impact of deforestation in11

Amazonia calls for qualified and comprehensive assessments12

of the factors affecting it. Such analysis has to take into13

account the enormous socio-economic and biophysical diver-14

sity of the region, aiming at understanding intra-regional15

differences.16

The process of human occupation in Brazilian Amazonia17

is heterogeneous in space and time. Until the 1950s, human18

occupation in the Brazilian Amazonia was concentrated along19

the rivers and coastal areas (Costa, 1997; Machado, 1998).20

The biggest changes in the region started in the 1960s and21

1970s, due to an effort of the Federal Government of popu-22

lating the region and integrating it to the rest of the country,23

including infrastructure network investments (roads, energy,24

telecommunication), colonization and development zones,25

and credit policies (Becker, 1997; Costa, 1997; Machado, 1998).Q326

In the last decades, after the mid-1980s, occupation con-27

tinues intensively, but more commanded by market forces28

(wood extraction, cattle, soybeans) than subsided by the29

Federal Government (Becker, 2005). Human occupation fol-30

lowed concentrated patterns along the axis of rivers and31

roads, kept apart by large forest masses. These forest areas32

have scattered population and include indigenous lands and33

conservation units. According to Alves (2002), deforestation34

tends to occur close to previously deforested areas, showing35

a marked spatially dependent pattern. Most of it concen-36

trated within 100 km from major roads and 1970s development37

zones, but not uniformly. As the occupation process is linked38

to agricultural production, deforestation tends also to be con-39

centrated along roads that provide an easier connection to the40

more prosperous economic areas in the center and south of41

Brazil (Alves, 2002). According to Becker (2001), in the Ama-42

zon coexist subregions with different speed of change, due43

to the diversity of ecological, socio-economic, political and of44

accessibility conditions.45

Recent estimates indicate that in the average, close to46

110,000 km2 of forest were cut in Amazonia in the period47

2001–2005 (INPE, 2005). The land cover change has also been48

associated to a concentration of land ownership. Farmers with49

large properties tend to be the dominant economic actors in50

the region, whereas the vast majority of the population lives51

on substandard conditions (Becker, 2005). Given the impor-52

tance of the Brazilian Amazonia region both at the national53

and international scales, it is important to derive sound indi-54

cators for public policy making. As stated by Becker (2001),55

“understanding the differences is the first step to appropriate pol-56

icy actions”. Informed policymaking requires a quantitative57

assessment of the factors that bring about change in Ama-58

zonia. Quantifying land-use determinant factors is also a59

requirement to the development of LUCC models that could60

be used to evaluate the potential impact of alternative policy 61

actions. 62

For instance, predictions of future deforestation presented 63

by Laurance et al. (2001) are based on the assumption that 64

the road infrastructure is the prime factor driving deforesta- 65

tion. Such predictions are based on a simple and uniform 66

extrapolation of past patterns of change into the medium 67

term future (2020), disregarding Amazonia’s biophysical and 68

socio-economic heterogeneity, and the web of immediate and 69

subjacent conditions that influence location and different 70

rates of change in space and time. Predictions based on such 71

an over-simplified view of reality may even lead to ineffective 72

policy recommendations, unable to deal with the real factors 73

affecting the Amazon occupation process (Câmara et al., 2005). 74

In that context, this paper develops a spatial statistical 75

analysis of the determinants associated to land-use change in 76

Amazonia. We use a spatially explicit database (25 km × 25 km 77

regular cells covering the original forest areas), including 50 78

environmental and socio-economic variables to support a 79

spatially explicit statistical analysis. Measures of territorial 80

connectivity received special attention in our analysis. We use 81

spatial statistical analysis methods to understand the relative 82

importance of the immediate factors related to deforestation, 83

pasture and temporary agriculture patterns, and to explore the 84

intra-regional differences between these factors. The paper 85

also compares the results of conventional linear regression 86

models to spatial regression models, and discusses the use 87

of the two approaches in LUCC dynamic models and scenario 88

analysis. 89

The paper is organized as follows. Section 2 presents a 90

review of previous work on assessment of factors of deforesta- 91

tion in tropical forests. Section 3 presents the methods used in 92

the assessment of determinant factors for land-use patterns in 93

Amazonia. Section 4 presents the results and discusses them. 94

We close the paper with final considerations regarding the use 95

of spatial regression methods in LUCC modeling, and sum- 96

marizing the main findings regarding the Amazonia human 97

occupation process. 98

2. Review of previous work

In this section, we consider previous work on assessment of 99

factors associated to land-use change in Amazonia, focus- 100

ing mainly on studies that cover the whole region. Table 1 101

summarizes results of previous studies in Amazonia, includ- 102

ing econometric models, and grid-based models as described 103

below. For other tropical forest areas, Kaimowitz and Angelsen 104

(1998) present a broad review of deforestation models. 105

One of the approaches reviewed is the use of econometric 106

methods based on municipal data. Along this line, Reis and 107

Guzmán (1994) developed a non-spatial econometric analysis 108

of deforestation at the region-wide level. They found out that 109

population density, road network density and extension of cultivated 110

areas were the most important factors. 111

Also using econometric methods, Andersen and Reis (1997) 112

analyzed the determining factors of deforestation from 1975 113

to 1995, using municipal data at a region-wide level. Results 114

indicate that deforestation started by a governmental action 115

associated to road construction and establishment of devel- 116
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Table 1 – Summary of previous statistical analyses of land-use determinant factors in the Brazilian Amazonia
(basin-wide studies)

Author Goal Approach Most important factors/results

Reis and Guzmán
(1994)

Determining factors of
deforestation

Econometric model/municipal
data

Population density, road network density and
extension of cultivated areas

Andersen and Reis
(1997)

Determining factors of
deforestation

Econometric model/municipal
data from 1975 to 1995

Distance to the federal capital, road length,
earlier deforestation in the area, earlier
deforestation in neighboring municipalities,
rural population density, land prices, urban GDP
growth, size of cattle herd, change in the size of
cattle herd, change in agricultural production,
and change in land prices

Pfaff (1999) Determining factors of
deforestation

Econometric model/municipal
data from 1978 to 1998 combined
with remote sensing data

Biophysical variables (soil quality and vegetation
type), transportation-related variables (road
network density in the area and in its
neighbors), and government-related variables
(development policies). Population density was
only considered a significant factor when the
model used a non-linear (quadratic) formulation

Margulis (2004) Relationships in space and
time of the main
agricultural activities (wood
extraction, pasture and
crops)

Econometric model/municipal
panel data from five agricultural
census, from 1970 to 1996,
complemented by geo-ecological
information and transport costs to
São Paulo by roads

(a) No evidence of precedence between the wood
extraction and pasture activities; (b) rainfall
seems to be the major agro-ecological
determinant; (c) reducing transportation cost
induces intensification, but results were not
conclusive in relation to intensification
increasing or decreasing deforestation

Perz and Skole (2003) Social determinants of
secondary vegetation

Spatial lag analysis/demographic
(1980 and 1991) and agricultural
(1980 and 1985) census data

Factors have a significant spatial variation
among the three subregions considered by the
authors (remote, frontier, consolidated). Social
factors are organized into: (1) settlement history,
(2) agricultural intensification, (3) non-traditional
land use, (4) crop productivity, (5) tenure
insecurity, (6) fuelwood extraction and (7) rural
in-migration

Laurance et al. (2002)
and Kirby et al. (in
press)

Spatial determinants of
deforestation

Statistical analysis to assess the
relative importance of 10 factors at
two spatial resolutions:
50 km × 50 km and 20 km × 20 km
(with sampling to avoid
auto-correlation)

Factors analyzed: paved road, unpaved roads,
urban population size, rural population density,
annual rainfall, soil fertility, soil water logging.
Both at the coarser and finer scales, three factors
are most relevant: urban and rural population
density, distance to paved roads and dry season
extension. Soils were not considered relevant

Soares-Filho et al.
(2006)

Spatial determinants of
deforestation (to feed a
dynamic model)

Logistic regression/regular grid of
1.25 km on sample areas

Distance paved and unpaved roads, distance to
urban areas, relief, existence of protected areas.
Deforestation is not influence by soils quality,
nor necessarily follows rivers

opment programs. Later on, local market forces turned out to117

be the more important factor, replacing government action as118

the main drivers for deforestation. Their model indicates that119

land-use change is caused by 11 factors: distance to the federal120

capital, road length, earlier deforestation in the area, earlier defor-121

estation in neighboring municipalities, rural population density, land122

prices, urban GDP growth, size of cattle herd, change in the size of123

cattle herd, change in agricultural production and change in land124

prices.125

Pfaff (1999) analyzed the determining factors of defor-126

estation using an econometric model based on municipal127

data from 1978 to 1988, associated to deforestation data128

obtained from remote sensing surveys, covering the whole129

region. His results indicate the relevance of biophysical vari-130

ables (soil quality and vegetation type), transportation-related131

variables (road network density in the area and in its neigh-132

bors) and government-related variables (development policies).133

Population density was only considered a significant factor134

when the model used a non-linear (quadratic) formulation. 135

The author concluded that, in a newly occupied area, earlier 136

migration has a stronger impact on deforestation than latter 137

settlements. 138

Margulis (2004) presents an econometric model that ana- 139

lyzes the Amazon occupation quantifying the relationships 140

in space and time of the main agricultural activities (wood 141

extraction, pasture and crops), and their effects in the region 142

deforestation. He also considers the ecological and economic 143

factors conditioning these relationships. Models are based 144

on municipal panel data from five agricultural census, from 145

1970 to 1996, complemented by geo-ecological information 146

(vegetation cover, relief, average rainfall and rainfall in June), and 147

transport costs (transport cost to São Paulo by roads). Results 148

indicate: (a) no evidence of precedence between the wood 149

extraction and pasture activities; (b) rainfall seems to be 150

the major agro-ecological determinant; (c) reducing trans- 151

portation cost induces intensification, but results were not 152
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conclusive in relation to intensification increasing or decreas-153

ing deforestation.154

The second type of research on causes of land-use change155

in Amazonia studies social factors based on municipal data156

and remote sensing. Perz and Skole (2003) developed a spatial157

regression model for secondary vegetation using social indi-158

cators as determining factors. They used demographic (1980159

and 1991) and agricultural (1980 and 1985) census data, aggre-160

gated at the municipal level. The results show that the factors161

have a significant spatial variation among the three subre-162

gions considered by the authors (remote, frontier, consolidated).163

Their study points out that analysis of factors that influence164

land-use change in Amazonia should consider regional differ-165

ences.166

A third line of work use regular cells as analysis units.167

Laurance et al. (2002) perform statistical analysis to assess the168

relative importance of 10 factors at two spatial resolutions:169

50 km × 50 km and 20 km × 20 km. Their main conclusions170

were that, both at the coarser and finer scales, three factors are171

most relevant for deforestation: population density, distance172

to roads and dry season extension. Kirby et al. (in press) refine173

this analysis, and reinforce that both paved and non-paved174

roads are the main factor determining deforestation.175

Soares-Filho et al. (2006) performed a statistical analysis toQ4176

define spatial determinants of deforestation to feed a dynamic177

model, using a regular grid of 1.25 km2. The dynamic model178

allocates deforestation using empirical relationships between179

forest conversion in a given period of time and spatial factors.180

These factors include proximity to roads, rivers and towns,181

land-use zoning and biophysical features. To establish such182

relationships, sample regional studies were used, and cali-183

brated for 12 LandsatTM scenes. Results were then used in the184

dynamic model to construct scenarios for the whole Amazo-185

nia. Their results indicate that the most important factors to186

predict deforestation location is proximity to roads; indige-187

nous reserves are important as a deterrent of deforestation;188

proximity to urban centers increases deforestation; deforesta-189

tion is related to relief, being smaller in low wet lands, and190

also in areas with higher altitude and slope. According to their191

results, it is not influenced by soil quality and vegetation type,192

and not necessarily follows the river network.1193

Also using regular grids as the unit of analysis, another194

line of work are subregional studies that consider specific195

areas and localized factors. Soares-Filho et al. (2002) ana-196

lyzed a small colonist’s area in north Mato Grosso during two197

time periods: 1986–1991 and 1991–1994. He constructed logis-198

tic regression models to analyze the determining factors for199

the following transitions: forest to deforested, deforested to200

secondary vegetation, and secondary vegetation to removal of201

secondary vegetation. The factors considered were: vegetation202

type, soil fertility, distance to rivers, distance to main roads, distance203

to secondary roads, distance to deforestation, distance to secondary204

vegetation and urban attractiveness factor.205

1 As further discussed in Section 5, these results are different
from the ones shown in this paper, due to a difference in the scale
of analysis. The relationship between land use and determining
factors established at one scale cannot be directly extrapolated to
regional scales (Gibson et al., 2000; Verburg et al., 2004).Q5

Mertens et al. (2002) studied the deforestation patterns in 206

the São Felix do Xingu region (Pará State). He divided the study 207

area in subregions according to patterns identified by remote 208

sensing and identified different types of social actors. Then he 209

applied logistic regression to analyze deforestation determin- 210

ing factors by type of actor in three time periods (before 1986, 211

1986–1992, 1992–1999). The factors analyzed were: presence of 212

colonization areas, presence of protected areas, presence of relief, 213

distance to cities, distance to villages, distance to dairy industries, 214

distance to main roads, distance to secondary roads and distance to 215

rivers. 216

Our work adds to these efforts in four aspects. Most stud- 217

ies in Amazonia are restricted to deforestation factors, while 218

we are going a step further, decomposing deforestation pat- 219

terns into pasture, temporary and permanent agriculture. Our 220

study investigates intra-regional differences through compar- 221

ative analyses of alternative space partitions. We use a spatial 222

regression model, what allow us to investigate the deforesta- 223

tion spatial dependence. In addition to the socio-economic 224

and biophysical factors adopted in previous works, the model 225

includes measures of connectivity to national markets and to 226

ports, and introduces agrarian structure indicators that have 227

not been used before. Our approach will be fully described in 228

the next section of this paper. 229

3. Methods

3.1. Study area, spatial resolution and spatial 230

partitions 231

The study area is the Brazilian Amazonia rain forest (around 232

4 million km2). To perform a spatially explicit analysis, all vari- 233

ables representing land-use patterns and potential factors are 234

decomposed in regular cells of 25 km × 25 km. The model con- 235

siders two spatial partitions: the whole Brazilian Amazonia 236

and three macro-zones defined by Becker (2005), namely the 237

Densely Populated Arch, the Central Amazonia and the Orien- 238

tal Amazonia. The Densely Populated Arch is associated with 239

higher demographic densities, roads and the core economic 240

activities. The Central Amazonia is the area crossed by the 241

new axes of development, from center of the Pará state to 242

the eastern part of the Amazonas state. According to Becker 243

(2004, 2005), it is currently the most vulnerable area, where the 244

new occupation frontiers are located. The Occidental Amazo- 245

nia is the more preserved region outside the main road axes 246

influence, with a unique population concentration in the city 247

of Manaus. Fig. 1 illustrates the study area, the three macro- 248

regions, the nine Federative States, and the distribution of 249

protected areas in the region. 250

3.2. Land cover/use patterns 251

The analysis uses the deforestation maps compiled by the 252

Brazilian National Institute of Space Research (INPE, 2005). 253

Cells with a major proportion of clouds, non-forest vegetation, 254

or outside the Brazilian Amazonia were eliminated from our 255

analysis. Cloud cover in 1997 represents around 13% of forest 256

area. Using a deforestation map that presents the accumu- 257

lated deforestation until 1997, we computed the proportion of 258

dx.doi.org/10.1016/j.ecolmodel.2007.06.019


U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

ECOMOD 4859 1–20
Please cite this article in press as: De Aguiar, A.P.D. et al., Spatial statistical analysis of land-use determinants in the Brazilian Amazonia:
Exploring intra-regional heterogeneity, Ecol. Model. (2007), doi:10.1016/j.ecolmodel.2007.06.019

ARTICLE IN PRESSECOMOD 4859 1–20

e c o l o g i c a l m o d e l l i n g x x x ( 2 0 0 7 ) xxx–xxx 5

Fig. 1 – Study area and space partitions adopted.

deforestation for each valid 25 km × 25 km cell, as illustrated259

in Fig. 2.260

The deforestation patterns were decomposed into the main261

agricultural uses for which area estimates was available from262

the IBGE (Brazilian Institute for Geography and Statistics) Agri-263

cultural Census of 1996 (IBGE, 1996). In this paper, we focus264

on pasture, temporary and permanent agriculture patterns.265

Although more recent information would be available for spe-266

cific crops (e.g., soya), the 1996 Agricultural Census is the267

last available source for planted pasture area, and, as seen268

below, pasture occupies around 70% of deforested area in 1997.269

Municipality-based census data was converted from polygon-270

based data to the cell space of 25 km × 25 km. Comparison271

between agricultural area reported by census data and mea- 272

sured by remote sensing showed disagreements in total area 273

(INPE, 2005). The total agricultural area for each municipality 274

was taken from the remote sensing survey, and the propor- 275

tion of each agricultural land-use category was taken from the 276

census. The conversion process assumed that the proportion 277

of land-use types is uniformly distributed over the deforested 278

areas of the municipality. Fig. 3 presents the resulting pasture, 279

temporary agriculture and permanent agriculture patterns. 280

As Fig. 3 shows, pasture is spread over the whole defor- 281

ested area, being the major land use in 1996/1997. It covers 282

approximately 70% of total deforested area, in agreement 283

with the estimates presented by Margulis (2004). Temporary 284

Fig. 2 – Deforestation pattern in 1997.

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Fig. 3 – Decomposition of deforestation patterns in 1997: (a) pasture pattern; (b) temporary agriculture pattern; (c) permanent
agriculture pattern.

crops represent approximately 13% of the deforested area, and285

permanent crops approximately 3% of the deforested area.286

Agricultural patterns are considerably more concentrated287

than pasture. Table 2 presents some quantitative indicators288

of the heterogeneity of distribution of the three land-use289

patterns across the region, considering different Federative290

States.291

As shown in Table 2 and Fig. 3, temporary crops are292

mostly concentrated the northeastern area of the Pará and in293

Maranhão states. The state of Mato Grosso and the areas along294

the main rivers in the Amazonas state also present a signifi-295

cant area proportion of the temporary agriculture pattern. The296

temporary agriculture class we adopted encompasses around297

80 types of temporary crops, and includes both subsistence298

and capitalized agriculture. According to the 1996 IBGE census299

information (IBGE, 1996), the temporary agriculture pattern300

seen in the south border of Mato Grosso is already related to 301

the capitalized agriculture (especially soybeans) expansion in 302

forest areas (Becker, 2001). On the other hand, in old occu- 303

pation areas such as the northeast of Pará and Maranhão, and 304

also in some municipalities in the north of Mato Grosso, agrar- 305

ian structure is dominated by small holders. According to IBGE 306

database (IBGE, 1996), dominant temporary crops were manioc 307

and corn in 1996. Permanent crops occupy a smaller area than 308

the other two land uses, concentrated in the old occupation 309

areas of the northeastern of Pará state and along the Amazon 310

River, and in Rondônia, where most occupation is related to 311

official settlement projects (Becker, 2005). These specific char- 312

acteristics of the distribution of the temporary and permanent 313

agriculture patterns reinforced the need to include agrarian 314

structure indicators in our regression analysis, as discussed 315

in the next section. 316

Table 2 – Quantitative indicators of land-use heterogeneity across the region in terms of number of 25 km × 25 km cells
occupied by different land uses

State Number of
valid cells

Number of cells
with more than
10% deforested

Number of cells
with more than

10% pasture

Number of cells with
more than 10%

temporary agriculture

Number of cells with
more than 10%

permanent agriculture

Amazonas 2117 102 25 19 6
Pará 1559 485 407 99 13
Mato Grosso 842 507 450 54 0
Rondônia 348 186 166 1 9
Acre 232 43 36 0 0
Maranhão 170 153 140 104 0
Roraima 156 31 21 0 0
Amapa 99 6 1 0 0
Tocantins 59 56 56 6 0

Total 5582 1569 1302 283 28

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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3.3. Spatial database of potential determinants317

The spatially explicit database is organized as a cellular space318

of 25 km × 25 km. It includes 50 environmental and socio-319

economic variables that could potentially explain macro and320

intra-regional differences in land use. The complete list of321

variables is in Appendix A. Dependent variables are those322

associated to land use (deforestation, pasture, temporary and323

permanent agriculture). The potential explanatory variables324

were grouped into seven types:325

• Accessibility to markets: distance to roads, rivers and urban326

centers, connection to national markets and ports, derived327

from IBGE (Brazilian Institute for Geography and Statistics)328

cartographic maps.329

• Economic attractiveness: capacity to attract new occupation330

areas, measured as distance to timber-production facilities331

and to mineral deposits. Timber-production facility data332

were provided by IBAMA (Brazilian Institute of Environment333

and Natural Resources) and mineral deposit data by CPRM334

(Brazilian Geological Service).335

• Agrarian structure: land distribution indicators, indicating336

the proportion (in terms of number of properties and in337

terms of area inside the municipality) of small (<200 ha),338

medium (200–1000 ha) and large (>1000 ha) farms. These339

measures use the IBGE (1996) agricultural census.340

• Demographical: population density and recent migration,341

based on the 1991 municipal census and the 1996 municipal342

population count by IBGE.343

• Technology: technological level of farmers, using indicators344

such as density of tractors per area and quantity of fertiliz-345

ers per area. These measures use the IBGE (1996) agricultural346

census.347

• Public policies: factors related to governmental actions, such348

as indicators associated to planned settlements, and protec-349

tion areas. Settlements information is provided by INCRA350

(Brazilian Institute of Colonization and Homestead). Pro-351

tected areas combine information from IBAMA, regarding352

conservation units, and FUNAI (Brazilian National Founda-353

tion for Indigenous Peoples), regarding Indigenous Lands.354

• Environmental: variables related to land conditions such as355

soil fertility and climate. Fertility data is derived from IBGE356

natural resources maps, integrating soil type, morphology,357

texture, and drainage information. Climate data source is358

INMET (Brazilian Institute of Meteorology).359

The measures of accessibility to markets include the con-360

nections to markets and ports. These variables deserved361

special attention. According to Becker (2001), road building has362

considerably modified the pattern of connectivity in Amazo-363

nia. Until the 1960s, the main connections were the Amazonas364

river and its main tributaries; after road building of the last365

decades of the 20th century, the importance of such con-366

nections were largely supplanted by transversal connections367

of roads crossing the valleys of the main tributary rivers.368

As Becker (2001) states: “connection distance and time were369

reduced from months to hours”. For our analysis, we com-370

puted connectivity indicators for each cell. We measured the371

minimum path distance through the roads network from each372

cell to national markets and to ports. The connectivity indica- 373

tor for each cell was taken as inversely proportional to this 374

minimum path distance. We distinguished paved from non- 375

paved roads (non-paved roads are supposed to double the 376

distances). These measures were computed using the gener- 377

alized proximity matrix (GPM), described in Aguiar et al. (2003). 378

The GPM is an extension of the spatial weights matrix used 379

in many spatial analysis methods (Bailey and Gattrel, 1995) 380

where the spatial relations are computed taking into account 381

not only absolute space relations (such as Euclidean distance), 382

but also relative space relations (such as topological connec- 383

tion on a network). Currently, most spatial data structures 384

and spatial analytical methods used in GIS, and also in LUCC 385

modeling, embody the notion of space as a set of absolute 386

locations in a Cartesian coordinate system, thus failing to 387

incorporate spatial relations dependent on topological con- 388

nections and fluxes between physical or virtual networks. Our 389

connection measures are an attempt to combine both when 390

assessing land-use determining factors. As pointed by Verburg 391

et al. (2004), understanding the role of networks is essential to 392

understanding land-use structure, and is considered a LUCC 393

research priority. 394

Other measures of accessibility to markets include dis- 395

tances to roads, rivers and urban centers. The distance to 396

roads measure uses the minimum Euclidean distance from 397

each cell to the nearest road. Distances from each cell 398

to urban centers, and rivers were measured in the same 399

way. 400

The agrarian structure indicators are based on municipal- 401

ity level information. The percentage of small, medium and 402

large farms in area was computed in relation to the total 403

area of farms inside the municipality. It disregards non-farm 404

areas inside the municipality such as protected areas, or land 405

owned by the Federal government. Thus, the small, medium 406

and large categories sum 100%. Alternative variables were 407

also computed giving the proportion of the number small, 408

medium and large farms in relation to the total number of 409

farms in the municipality. These six variables are indicators 410

of the dominance of a certain type of actor in a certain region. 411

As the variables are highly correlated, we choose to use the 412

small farms area proportion in our analysis. Demographical, 413

technological and settlements variables are also derived from 414

municipality level data. Variable values in the 25 km × 25 km 415

cells were computed taking the average of the corresponding 416

values in each municipality (e.g., number of settled families) 417

weighted by the area intersection between the municipalities 418

and the cell. 419

The measure of environmental protection areas uses the 420

percentage of each cell that intercepts a protected area. Soil 421

variables use a fertility classification based on IBGE soils map 422

that considers soil type, morphology, texture and drainage 423

information. Based on this classification, we grouped the soils 424

into three categories: fertile soils, non-fertile soils and wetland 425

soils. The soil variables considered in our analysis represent 426

the proportion of each of these categories in the 25 km × 25 km 427

cells. 428

Climate data uses monthly averages of precipitation, 429

humidity and temperature from 1961 to 1990, on a grid with 430

a spacing of 0.25◦ of latitude and longitude. Since the three 431

indices were highly correlated, we choose to work with humid- 432

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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ity, which has a higher correlation to deforestation than the433

other two climatic variables. The humidity data was converted434

into 25 km × 25 km cells by computing the intensity of the dry435

season in each cell. The dry season does not occur at the same436

period in each cell, and varies from June–July–August in the437

state of Mato Grosso region to November–December–January438

on the state of Roraima. The climate indicator for each cell439

is a measure that accounts for these differences, by taking440

the average of the three drier and consecutive months in each441

cell.442

3.4. Exploratory analysis and selection of variables443

An initial exploratory statistical analysis showed that some444

of the relationships between potential explanatory variables445

and the land-use variables were not linear. We applied a loga-446

rithmic transformation to the land-use variables and to some447

explanatory variables. The log transformation improved the448

regression results significantly. This improvement suggests449

that the explanatory variables are related to the initial choice450

of areas to be occupied. After the initial choice, land-use451

change behaves as a spatial diffusion process because defor-452

estation tends to occur close to previously deforested areas453

(Alves, 2002).454

There was a high degree of correlation among poten-455

tial explanatory factors. When choosing between highly456

correlated variables, those related to public policies of infras-457

tructure (accessibility) and conservation (protected areas), to458

subside the next step of this work that aims at LUCC dynamic459

modeling and policy scenario analysis. For the same cate-460

gory, alternative possibilities were tested. For instance, out461

of the many environmental variables, we chose the average462

humidity in the drier months. The final choice of explanatory 463

variables for regression analysis does not include demograph- 464

ical or technological factors, which are captured indirectly 465

by other variables. As a result, the statistical analysis used 466

only a representative subset of all variables, as shown in 467

Table 3. This subset was selected to cover the broadest 468

possible range of categories, while minimizing correlation 469

problems. 470

Even in the subset of variables presented above, there was 471

still a high degree of correlation, which varied across the 472

spatial partitions. We decided to build different spatial regres- 473

sion models, where each model had potentially explanatory 474

variables with less than 50% correlation between them. To 475

build the regression models, we selected as primary vari- 476

ables those with potentially greater explanatory power in 477

relation to deforestation: distance to urban centers, distance 478

to roads, climatic conditions and connection to markets. Then 479

we tested these three variables for correlation to select the 480

leading variables for each model. Distance to urban centers 481

and distance to roads were correlated in all spatial parti- 482

tions, except in the Occidental one. Distance to roads and 483

connection to national markets could not be placed in the 484

same subgroup for the whole Amazon. Climatic conditions 485

and connection to national markets were also highly cor- 486

related, except in the central region. This cross-correlation 487

analysis between the potentially explanatory variables led to 488

the models summarized in Table 4. An automatic linear for- 489

ward stepwise regression was applied to refine the models 490

and discard non-significant variables. Some variables were 491

found to be significant in some of the models and non- 492

significant in others, as shown in Table 4. The resulting models 493

are: 494

Table 3 – Potential explanatory variables of land-use patterns in the Brazilian Amazonia

Category Variable Description Unit Source

Accessibility to markets conn mkt Indicator of strength of connection to national markets
(SP and NE) through roads network

– IBGEa

conn ports Indicator of strength of connection to ports through
roads network

– IBGE

log dist rivers Euclidean distance to large rivers (log) km IBGE
log dist roads Euclidean distance to roads (log) km IBGE
log dist urban Euclidean distance to urban centers (log) km IBGE

Economic attractiveness log dist wood Euclidean distance to wood extraction poles (log) km IBAMAb

log dist mineral Euclidean distance to mineral deposits (log) km CPRMc

Public policies prot area Percentage of protected areas % of cell area IBAMA FUNAId

log settl Number of settled families from 1970 to 1999 (log) Number of
families (log)

INCRAe

Agrarian structure
environmental

agr small Percentage of area of small properties % of cell area IBGE

soil fert Percentage of high and medium to high fertility soils in % of cell area IBGE
soil wet Percentage of wetland soils (“várzea” soils) % of cell area IBGE
clim humid Average humidity in the three drier months of the year mm INMETf

a IBGE—Brazilian Institute of Geography and Statistics.
b IBAMA—Brazilian Institute of Environment and Natural Resources.
c CPRM—Brazilian Geological Service.
d FUNAI—Brazilian National Foundation for Indigenous Peoples.
e INCRA—Brazilian Institute of Colonization and Homestead.
f INMET—Brazilian Institute of Meteorology.

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Table 4 – Groups of non-correlated explanatory variables Q12

Amazonia Arch Central Occidental

Urban +
connection

Urban +
climate

Roads +
climate

Urban +
climate

Roads +
connection

Urban +
climate +
connection

Roads +
climate +
connection

Urban +
roads

log dist urban × × × × ×
log dist roads × × × ×
conn mkt × × × × n/s
clima humid × × × × × n/s
conn ports × × × n/s n/s × × n/s
log dist rivers × × × n/s n/s × × ×
log dist wood × ×
log dist mineral × × × × ×
prot area × × × × × × × ×
agr small × × × × × × n/s n/s
log settl × × × × × × × ×
soil fert × × × × × × × n/s
soil wet × n/s × n/s n/s × × n/s

n/s: non-significant variables discarded in an automatic forward stepwise procedure.

• Amazonia: for the whole region, we considered three models:495

one including distance to urban centers and connection to496

markets (urban + connection), one including distance to urban497

centers and climatic conditions (urban + climate), and a third498

one including distance to roads and climatic conditions499

(roads + climate).500

• Densely Populated Arch: for this region, we considered two501

models. The first is lead by distance to urban centers502

and connection to markets (urban + connection) and the sec-503

ond includes distance to roads and connection to markets504

(roads + connection).505

• Central Amazonia: for this region, we considered two mod-506

els. The first is lead by distance to urban centers and507

connection to markets (urban + connection) and the second508

includes distance to roads and connection to markets509

(roads + connection).510

• Central Amazonia: for this region, we considered a single511

model that includes distance to urban centers, distance to512

roads, and connection to markets (urban + roads + connection).513

3.5. Spatial regression modeling514

We used spatial regression models to establish the relative515

importance of the determining factors for different land uses.516

One of the basic hypotheses in linear regression models is that517

observations are not correlated, and consequently the residu-518

als of the models are not correlated too. In land-use data, this519

hypothesis is frequently not true. Land-use data have the ten-520

dency to be spatially autocorrelated. The land-use changes in521

one area tend to propagate to neighboring regions. This work522

applies a spatial lag regression model (Anselin, 2001) to assess523

the relative importance of potential explanatory factors. In524

this method, the spatial structure is supposed to be captured525

in one parameter.526

The linear regression model formulation can be described527

as528

Y = Xˇ + ε, ε ∼ N(0, �2), or (1)529

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

...
yn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x11 · · · x1k−1

1 x21 · · · x2k−1
...

... · · ·
...

...
... · · ·

...
1 xn1 · · · xnk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ˇ0

ˇ1

...

...
ˇk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

...

...
εn

⎤
⎥⎥⎥⎥⎥⎥⎦

Q6(2) 530

where Y is an (n × 1) vector of observations on a dependent 531

variable taken at each of n locations, X the (n × k) matrix of 532

exogenous variables, ˇ the (k × 1) vector of parameters, and ε 533

is the (n × 1) an vector of disturbances. The spatial lag model 534

includes a spatial dependence term, through a new term that 535

incorporates the spatial autocorrelation as part of the explana- 536

tory component of the model: 537

Y = �WY + Xˇ + ε (3) 538

where W is the spatial weights matrix, and the product WY 539

expresses the spatial dependence on Y, where � is the spatial 540

autoregressive coefficient. The spatial autoregressive lag model 541

aims at exploring the global patterns of spatial autocorrela- 542

tion in the data set. This spatial model considers that the 543

spatial process whose observations are being analyzed is sta- 544

tionary. This implies that the spatial autocorrelation patterns 545

can be captured in a single regression term. This method was 546

employed by Overmars et al. (2003) in a study in Ecuador. In 547

the Brazilian Amazon, Perz and Skole (2003) used a spatial lag 548

model, focusing on social factors related to secondary vegeta- 549

tion. 550

In this work, we compare the results of the spatial lag mod- 551

els with those of a non-spatial linear regression model for the 552

whole Amazonia. This helps to understand how explanatory 553

factors contribute to spatial dependence in this case. This is 554

also the basis for the analysis of how the different methods 555

could be used in LUCC dynamic modeling. 556

These results will be presented in the next section. In order 557

to compare the models, we will present the R2 value (coeffi- 558

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Table 5 – Linear and spatial lag regression models of (log) deforestation determining factors in the whole Amazon Q13

Subgroup urban + connection Subgroup urban + climate Subgroup roads + climate

Variable Beta p-Level Variable Beta p-Level Variable Beta p-Level

Linear regression
R2: 0.66 R2: 0.65 R2: 0.58
AIC: −39,144.50 AIC: −38,944.9 AIC: −37,928.6
log dist urban −0.45 0.00 log dist urban −0.48 0.00 log dist road −0.39 0.00
conn mkt 0.26 0.00 clim humid −0.18 0.00 clim humid −0.24 0.00
prot area −0.14 0.00 log settl 0.12 0.00 prot area −0.19 0.00
log settl 0.10 0.00 prot area −0.15 0.00 soil fert 0.16 0.00
soil fert 0.09 0.00 soil fert 0.12 0.00 log settl 0.13 0.00
conn ports 0.07 0.00 agr small −0.10 0.00 soil wet 0.10 0.00
agr small −0.09 0.00 conn ports 0.07 0.00 log dist rivers −0.07 0.00
log dist rivers −0.04 0.00 log dist mineral −0.05 0.00 conn ports 0.05 0.00
soil wet −0.02 0.02 log dist rivers −0.03 0.00 agr small −0.06 0.00

Spatial lag
R2: 0.81 R2: 0.81 R2: 0.81
AIC: −41,876.2 AIC: −41,871 AIC: −41,781.5
w log def 0.73 0.00 w log def 0.74 0.00 w log def 0.78 0.00
log dist urban −0.15 0.00 log dist urban −0.16 0.00 log dist road −0.13 0.00
conn mkt 0.05 0.00 clim humid −0.04 0.00 clim humid −0.05 0.00
prot area −0.07 0.00 log settl 0.03 0.00 prot area −0.07 0.00
log settl 0.03 0.00 prot area −0.07 0.00 soil fert 0.04 0.00
soil fert 0.03 0.00 soil fert 0.03 0.00 log settl 0.02 0.01
conn ports 0.02 0.00 agr small −0.03 0.00 soil wet 0.05 0.00
agr small −0.03 0.00 conn ports 0.02 0.00 log dist rivers −0.03 0.00
log dist rivers −0.03 0.00 log dist mineral −0.02 0.01 conn ports 0.01 0.14
soil wet 0.01 0.05 log dist rivers −0.02 0.00 agr small −0.01 0.18

cient of multiple determination) and the Akaike information559

criteria (AIC). As stated by Anselin (2001), the R2 value is not560

a reliable indicator of goodness of fit when the data is spa-561

tially autocorrelated. The Akaike information criteria (Akaike,562

1974) is a more suitable performance measure than the R2
563

value for spatially correlated data. The model with the highest564

AIC absolute value is the best. To compare the determining565

factors relative importance in each model, the standardized566

regression coefficients (beta) and associated significance level567

(p-level) for each variable will be presented.568

4. Results and discussion

This section summarizes our main findings, organized as569

follows. Section 4.1 presents the deforestation determining570

factors for whole Amazonia. It compares the results obtained571

by linear regression to those of spatial regression. The compar-572

ison shows how determinants change their importance when573

spatial autocorrelation is considered, and what this indi-574

cates in terms of spatial dependence and land-use structure.575

Section 4.2 presents a comparison of deforestation factors576

across the four spatial partitions (Amazonia, Densely Popu-577

lated Arch, Central and Occidental macro-zones), using spatial578

regression models. Section 4.3 presents a comparison of the579

main land-use (pasture, temporary and permanent agricul-580

ture) determinants, also using spatial regression models. The581

results of pasture and agriculture determinants are presented582

only for the Arch macro-zone, where occupation is more con-583

solidated. Appendix B shows the spatial distribution of the584

most important factors analyzed in the next sections.

4.1. Deforestation factors in the whole Amazonia 585

In this section, we present and discuss regression models for 586

whole Amazonia. A pre-processing step maintained in the 587

models only variables less than 50% correlated to each other, 588

and eliminated those non-significant according to an auto- 589

matic forward stepwise procedure (see Table 4). The three 590

models we compare are: urban + connection, urban + climate and 591

roads + climate. 592

Table 5 presents the statistical analysis results for the three 593

models and compares the non-spatial linear regression model 594

with the spatial lag model, where the dependent variable is the 595

log percentage of deforestation for each 25 km × 25 km cell. The 596

spatial lag model includes one additional variable (w log def) 597

that measures the extent of spatial autocorrelation in the 598

deforestation process. In Table 5, we present the R2 value (coef- 599

ficient of multiple determination) and the Akaike information 600

criteria for all models. In both indicators, the spatial regression 601

models showed a better performance than the non-spatial lin- 602

ear model. The spatial coefficient of the spatial lag models is 603

significant and higher than 0.70 in all models. This is a quan- 604

titative evidence that corroborates of earlier assessments that 605

deforestation is a diffusive process in the Amazon, and tends 606

to occur close of previously opened areas (Alves, 2002). The 607

other variables found to be important (with higher betas) are 608

distance to urban centers (log), distance to roads (log), connec- 609

tion to markets, humidity and protected areas. 610

We also compared the strength of the most important fac- 611

tors considering the linear regression model and the spatial 612

lag model, as shown in Table 6. It groups the distance to 613

urban centers and distance to roads variables that are highly 614

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Table 6 – Main deforestation determining factors comparison (whole Amazonia)

Variable Subgroup Beta % of decrease

Linear Spatial lag

w log def Urban + connection – 0.73 –
w log def Urban + climate – 0.74 –
w log def Roads + climate – 0.78 –
log dist urban Urban + connection −0.45 −0.15 67
log dist urban Urban + climate −0.48 −0.16 67
log dist roads Roads + climate −0.39 −0.13 67
conn mkt Urban + connection 0.26 0.05 81
clim humid Urban + climate −0.18 −0.04 78
clim humid Roads + climate −0.24 −0.05 79
prot area Urban + connection −0.14 −0.07 50
prot area Urban + climate −0.15 −0.07 53
prot area Roads + climate −0.19 −0.07 63

correlated, and then connection to markets and climate vari-615

ables, also highly correlated. As expected, using the spatial lag616

regression model, all betas get lower, but not in a uniform way.617

When considering the intrinsic spatial dependence of defor-618

estation, the ‘connection to markets’ variable (and the climate619

one) decreases proportionally more than the others, although620

it is still one of the main factors. Therefore, these variables621

carry a large part of the spatial dependence. This corrobo-622

rates with earlier assessments (Alves, 2002) that showed that623

deforestation tends to occur along roads that provide an eas-624

ier connection to the more developed areas in Brazil. These625

areas also present the driest climate in Amazon, with more626

favorable conditions to agriculture (and also to infra-structure627

construction and maintenance) than the more humid areas628

in the western Amazonia, in accordance with previous results629

(Schneider et al., 2000). Our statistical results indicate that630

these factors (the diffusive nature of deforestation, distance631

to roads and to urban centers, climate and connection to632

markets), and the interaction among them, contributed sig-633

nificantly for the pattern of deforestation in 1996/1997. The634

existence of protected areas also plays an important role in635

avoiding deforestation in high-pressure areas, as will be fur-636

ther discussed in the next section.637

Previous studies of causes of land-use change in Amazonia638

tended to emphasize distance to roads as the main determi-639

nant (Kirby et al., in press; Laurance, 2002). The results fromQ7640

this paper indicate that distance to urban centers is as impor-641

tant as distance to roads as a determinant factor for land-use642

change. Distance to urban centers is a population indicator643

and also a proxy of local markets. In 1996, 61% of the approx-644

imately 20 million people lived in Amazonian urban areas; in645

2000, 69% of the total population (Becker, 2004). Urban popu-646

lation growth rates increase faster in Amazonia than in other647

parts of Brazil, not only in the larger cities but also in those648

with less than 100,000 people (Becker, 2001). Faminow (1997)649

showed that the local demand for cattle products such as650

beef and milk is an overlooked cause of cattle production651

increase, and consequently, deforestation. Our results rein-652

force the need to further understand the relationship between653

land-use change and this process of urban population growth654

in Amazonia.655

In summary, our results indicate that strong spatially con-656

centrated pattern of deforestation in Amazonia is related to657

the diffusive nature of the land-use change process. The con- 658

centration of this pattern in the southern and eastern parts 659

of the Amazonia is related to proximity to urban centers and 660

roads, reinforced by the higher connectivity to the more devel- 661

oped parts of Brazil, and more favorable climatic conditions in 662

comparison to the rest of the region. Therefore, more favor- 663

able production conditions in terms of climate, connection to 664

national markets, and proximity to local markets seem to be 665

the key factors in explaining the deforestation process. 666

4.2. Comparison of deforestation determining factors 667

across space partitions 668

In this section, we present and discuss the regression models 669

for three spatial partitions: Densely Populated Arch, Central 670

and Occidental Amazonia. For each space partition, two alter- 671

native models were considered, one including the ‘distance to 672

urban centers’ variable, and one with the ‘distance to roads’ 673

variable (except in the Occidental partition where they were 674

allowed to be in the same model). A pre-processing step main- 675

tained in the models only variables less than 50% correlated 676

to each other, and eliminated those non-significant accord- 677

ing to an automatic forward stepwise procedure (see Table 4). 678

The following models are compared: urban + climate (Arch), 679

roads + connection (Arch), urban + climate + connection (Central), 680

roads + climate + connection (Central) and urban + roads (Occiden- 681

tal). 682

Table 7 presents the statistical analysis results for these 683

models, including the R2 and the Akaike information criteria. 684

Both criteria indicate that the Arch models are the best fit. The 685

spatial autoregressive coefficient (w log def) is significant and 686

higher than 0.67 in all models of the Arch and Central regions. 687

In the Occidental region, it is also significant, but presents a 688

lower value (0.54), indicating a less marked spatial pattern. 689

The Occidental region is still quite undisturbed, except by the 690

areas close to the main rivers, and around Manaus. As stated 691

by Becker (2001) the Amazonia presents regions with different 692

speeds of modification. The lower spatial dependence is an 693

indicator that occupied areas in the Occidental region do not 694

spread to the neighboring cells at the same pace as the ones in 695

the main axes of development in the Arch and central region. 696

The other variables found to be important (with higher betas) 697

– or that present some relevant variation among the spatial 698

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Table 7 – Spatial lag regression models of deforestation determining factors across space partitions

Arch Central Occidental

Variable Beta p-Level Variable Beta p-Level Variable Beta p-Level

Distance to roads models
R2: 0.80 R2: 0.71 R2: 0.50
AIC: −14,783.70 AIC: −12,413.10 AIC: −12,023.00
w log def 0.71 0.00 w log def 0.72 0.00 w log def 0.54 0.00
conn mkts 0.07 0.00 log dist roads −0.16 0.00 log dist urban −0.24 0.00
prot areas −0.19 0.00 conn ports 0.07 0.00 log dist roads −0.15 0.00
log dist roads −0.12 0.00 log dist rivers −0.07 0.00 log dist rivers −0.08 0.00
log dist wood −0.04 0.00 log settl 0.04 0.01 prot area −0.02 0.17
soil fert 0.04 0.00 prot area −0.06 0.00 log settl 0.00 0.81
log settl 0.02 0.05 soil wet 0.07 0.00
agr small −0.03 0.01 log dist mineral −0.05 0.00
log dist mineral −0.01 0.20 conn mkt 0.03 0.06

clim humid −0.07 0.00
soil fert 0.03 0.06

Distance to urban models
R2: 0.80 R2: 0.71
AIC: −13,942.20 AIC: −12,405.10
w log def 0.70 0.00 w log def 0.67 0.00
log dist urban −0.16 0.00 log dist urban −0.17 0.00
prot areas −0.19 0.00 conn ports 0.09 0.00
clim humid −0.05 0.00 conn mkt 0.07 0.00
log settl 0.03 0.00 prot area −0.07 0.00
soil fert 0.03 0.00 log dist mineral −0.05 0.00
log dist mineral −0.03 0.02 log settl 0.04 0.00
agr small −0.03 0.01 soil wet 0.05 0.00
log dist wood −0.02 0.05 clim humid −0.06 0.00

log dist rivers −0.05 0.00
soil fert 0.03 0.04
agr small 0.01 0.68

partitions – are: distance to urban centers (log), distance to699

roads (log), protected areas, connection to markets, connec-700

tion to ports, distance to large rivers, soil fertility, number of701

settled families, and agrarian structure. Fig. 4 illustrates graph-702

ically the most important differences found among these eight703

factors.704

The first main difference is the relative higher values of705

the protected areas variable (percent of all types of protected706

areas in each cell, including Indigenous Lands and Federal and707

State Conservation Units). In the Arch, it is the second most 708

important factor (after the spatial autocorrelation coefficient), 709

preceding distance to roads and distance to urban centers. 710

Indigenous lands and conservation units correspond, respec- 711

tively, to 22 and 6% of the Amazon region (Becker, 2001), spread 712

over the region (see Fig. 2). Our results indicate quantitatively 713

that protected areas can be important instruments in avoiding 714

deforestation in high-pressure areas such as the Arch. This is 715

in accordance with earlier results that showed that protected 716

Fig. 4 – Graphical comparison of main deforestation factors across macro-regions. Values shown are the average of
significant beta coefficients. Empty values are non-significant coefficients in any of the models for that partition.
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areas are in general effective in refraining deforestation even717

if some level of deforestation is found inside of them Ferreira718

and Almeida (2005). Their efficacy depends on the clear demar-Q8719

cation of its limits, on the socio-economic context in which720

they are created, and on appropriate monitoring and control-721

ling measures, as discussed by Ribeiro et al. (2005) and Escada722

et al. (2005).723

Distance to roads and distance to urban centers are not the724

most important determinants in all macro-regions. Also, they725

do not explain intra-regional differences, as they are both sim-726

ilarly important in all macro-zones, except in the Occidental727

macro-zone, where distance to urban centers is considerably728

more important. In the Occidental macro-zone, distance to729

large rivers also plays an important role. This result is coherent730

with the small disturbance of the area, concentrated mostly731

in Manaus and close to the rivers.732

On the other hand, connection measures (connection733

to markets and connection to ports) play different roles734

across the partitions. Connection to markets is important in735

explaining Arch deforestation patterns, but not in the other736

macro-regions. In the central macro-region it looses signifi-737

cance in one of the models, when distance to roads is also738

used. Connection to ports is important only in the central739

region, whose historical occupation process is related to the740

rivers. Climate (intensity of dry season) is also important in741

explaining deforestation in the Arch and central partitions.742

In the central spatial partition, the climate variable did not743

present correlation to the connection to markets variable, and744

both could be placed in the same regression model. In the745

Arch, climate and connection to markets are correlated, and746

were analyzed in different models, both presenting signifi-747

cant coefficient values. This indicates that both factors created748

favorable conditions to occupation in the eastern part of the749

Amazon.750

The differences between the models for the Arch and the751

central regions are important. They point out to an occupation752

process in the Arch that uses roads as its main connections.753

In the Arch, the existence of protected areas is the main factor754

that is statistically significant as an impediment to deforesta-755

tion. A second deterrent is unfavorable climatic conditions, in756

areas where the dry season is more intense. Since the area on757

the south of the Arch (see Fig. 1 and Appendix B) still has a con-758

siderable extension of primary forest areas outside protected759

areas, close to the mechanized agriculture belt in the south of760

Mato Grosso, and also benefits from drier climate, the creation761

of protected areas in that region would be an important factor762

for deterrence of the deforestation process.763

In the central region, due to its historical occupation pro-764

cess, connection to national markets is not significant in one765

of the models. There is a stronger influence of rivers connec-766

tions (variables distance to rivers and connection to ports).767

The central region is currently the most vulnerable region,768

where new frontiers are located (Becker, 2004). As the agri-769

cultural production systems of the new occupied areas in the770

central region became stronger, these statistical relationships771

will be modified to reflect the new reality, but not necessar-772

ily replicating the Arch relationships. For instance, connection773

to ports may continue to be important in the central region774

due to the presence of exportation ports in the Amazon River,775

but road connection to the rest of the country may also gain776

importance, linking productive areas to their markets. In rela- 777

tion to protected areas, the statistical relationship was not as 778

strong as in the Arch in the period of analysis. However, the 779

creation of protected areas in the central region, in appropri- 780

ate socio-economic contexts (Escada et al., 2005), would also 781

be an important instrument for conservation of areas that may 782

become threatened by the new frontiers. 783

In the next paragraphs, we discuss results related to other 784

significant variables: soils fertility, number of settled families 785

and agrarian structure indicators. The soils fertility indicator 786

(percentage of fertile soils in each cell) has a positive relation- 787

ship to deforestation in the Arch and in the whole Amazonia 788

models. Comparing the deforestation patterns and the pat- 789

terns of medium and high fertility soils in the 25 km × 25 km 790

cell space shown in Appendix B, one can notice the existence 791

of better quality soils in Rondônia and the Transamazônica, 792

where most colonization programs were placed. Better soils 793

are also found in Mato Grosso. Federal Government possibly 794

took into consideration existing soil surveys when planning 795

the development projects and colonization settlements of the 796

1970s and 1980s (the RADAM project in the 1970s mapped veg- 797

etation, soils, geology and geomorphology). 798

As expected, the number of settled families by official col- 799

onization programs (accumulated from 1970 to 1999) has a 800

positive and significant relationship in the Arch and central 801

regions (and also in the whole Amazonia, as Table 5 shows). On 802

the other hand, the agrarian structure indicator (percentage 803

in area of farms smaller than 200 ha) is also significant in the 804

Arch, but presents a negative signal, indicating that deforesta- 805

tion is more associated with areas with a greater proportion of 806

medium and large farms, than areas occupied by small farms. 807

This relationship is also significant in the whole Amazonia. 808

Many authors have presented diverse estimates of the 809

share of small and large farmers in relation to deforesta- 810

tion (for instance, Fearnside, 1993; Walker et al., 2000). As 811

stated by Walker et al. (2000) and Margulis (2004), the relative 812

importance of small, medium and large farms on deforesta- 813

tion varies from one region to the other, as the dynamics of 814

deforestation are very distinct at different localities. However, 815

most of previous works show that when considering the overall 816

deforestation extent in the Amazon a more significant impact is 817

caused by large farms (Margulis, 2004). Our results provide fur- 818

ther evidence that areas occupied by large and medium farms 819

have a higher impact on deforestation than areas occupied by 820

small farms, when the whole Arch macro-zone is analyzed. 821

This can be explained by the relative contribution of Pará, 822

Tocantins and Mato Grosso states. As Fig. 5 illustrates, small 823

farm areas are concentrated in Rondônia, northeast of Pará 824

and Maranhão. In most of the Arch area, the agrarian structure 825

is predominantly of medium and large farms. For instance, in 826

Mato Grosso the mean value for the agrarian structure indica- 827

tor is 0.07 (0.07 standard deviation), meaning that in average 828

only 7% of the farm lands are occupied by properties with less 829

than 200 ha. 830

4.3. Comparison of land-use determining factors in 831

the Arch partition 832

This section presents and discusses the results of the spa- 833

tial lag models for the Arch partition, in which the dependent 834

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Fig. 5 – Agrarian structure and deforestation patterns in the Arch. (a) Deforestation (percentage of deforested areas in each
cell) and (b) agrarian structure (percentage of small farms in each cell).

variables are the log percentage of pasture, temporary agricul-835

ture and permanent agriculture in each 25 km × 25 km cell. For836

each of these three types of land use, we consider two alter-837

native models, one including the ‘distance to urban centers’838

variable (urban + climate model), and one with the ‘distance to839

roads’ (roads + connection), as summarized in Table 4.840

Table 8 presents the statistical analysis results for the six841

models. The R2 and the Akaike information criteria are pre-842

sented as measures of goodness of fit to compare the models.843

All indices are similar, but temporary agriculture models per-844

form slightly better according to the log likelihood. The spatial845

auto-regressive coefficient of the spatial lag models is signifi-846

cant and higher than 0.70 in all models, presenting the higher847

values in the permanent agriculture models (above 0.80), indi-848

cating a stronger clustering of such use (see Fig. 2). The other849

relevant factors that will be analyzed in this section are: dis-850

tance to urban centers (log), distance to roads (log), protected851

areas, connection to markets and agrarian structure. Fig. 6852

illustrates graphically the most important differences found853

among these eight factors.854

As with deforestation in the Arch macro-region, protected855

areas, distance to roads and distance to urban centers are856

the most important variables in explaining the distribution857

of land-use patterns. Connection to markets is significant858

to temporary agriculture and pasture, but not to permanent859

agriculture. The main difference is the signal in relation860

to agrarian structure variable (percentage in area of farms861

smaller than 200 ha). The beta value for the agrarian struc-862

ture has a positive value in both temporary agriculture and863

permanent agriculture models. In the pasture model, the beta864

is negative.865

Pasture is spread over the region (see Fig. 3), and its866

determining factors are very similar to deforestation ones, dis-867

cussed in previous section. Our results indicate that medium868

and large farms have a larger proportion of pasture areas 869

when considering the whole Arch extent. The relative share of 870

small, medium and large farms in terms of pasture area varies 871

according different localities. Rondônia, for instance, have a 872

significant pasture area (see Table 2), and an agrarian structure 873

related to small farmers. The negative signal our model cap- 874

tures is related to the proportionally larger area of Mato Grosso 875

and Pará States, in which the agrarian structure is predomi- 876

nantly of large farms. 877

On the other hand, temporary and permanent agricul- 878

ture present differentiated and concentrated patterns, as 879

discussed in Section 3.2. Our results indicate a tendency for 880

temporary and permanent agriculture to occupy areas associ- 881

ated to small farms, when considering the whole Arch, in our 882

period of analysis. Permanent crops are present in northeast- 883

ern Pará, Rondônia and along the Amazon River. These three 884

areas have a land structure related mostly to small properties, 885

what explains the positive signal in the permanent agricul- 886

ture model. In the temporary agriculture model, the positive 887

signal can be explained by the fact that the temporary agricul- 888

ture practiced in Pará and Maranhão by small farmers occupy 889

a larger area than the mechanized agriculture found in the 890

south of Mato Grosso (see Table 2). Although this statistical 891

relationship may change with the expansion of mechanized 892

agriculture into forest areas (Becker, 2005), that requires large 893

tracts of plain land, and is practiced by a capitalized type of 894

actor, our results indicate the existence of a land-use sys- 895

tem based on temporary agriculture practiced by small farms, 896

especially in old occupation areas such as Maranhão and 897

northeast Pará. 898

This land-use pattern analysis we conducted provide fur- 899

ther evidence of the heterogeneity of the region, both in terms 900

of agrarian structure and land-use trajectories adopted in 901

different localities. For instance, both Rondônia and the north- 902

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
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Table 8 – Spatial lag regression models of pasture, temporary and permanent agriculture in the arch

Pasture Temporary agriculture Permanent agriculture

Variable Beta p-Level Variable Beta p-Level Variable Beta p-Level

Distance to roads subgroups
R2: 0.82 R2: 0.85 R2: 0.83
AIC: −14,935.10 AIC: −15,308.40 AIC: −15,069.00
w log past 0.74 0.00 w log temp 0.77 0.00 w log perm 0.82 0.00
conn mkt 0.06 0.00 conn mkt 0.08 0.00 log dist roads −0.09 0.00
prot area −0.18 0.00 prot area −0.14 0.00 agr small 0.07 0.00
log dist roads −0.12 0.00 agr small 0.06 0.00 prot area −0.11 0.00
log dist wood −0.04 0.00 log dist wood −0.04 0.00 log dist wood −0.05 0.00
agr small −0.06 0.00 log dist roads −0.07 0.00 soil fert 0.04 0.00
log settl 0.03 0.00 soil fert 0.02 0.03 conn ports 0.01 0.57
soild fert 0.03 0.01 log settl 0.03 0.01 conn mkt −0.02 0.14
log dist mineral −0.03 0.01 conn ports 0.01 0.50 log dist mineral −0.01 0.31
log dist rivers 0.03 0.00 log dist rivers 0.03 0.01

log dist mineral 0.01 0.37

Distance to urban centers subgroups
R2: 0.82 R2: 0.85 R2: 0.83
AIC: −14,933.20 AIC: −15,366.40 AIC: −15,066.80
w log past 0.74 0.00 w log temp 0.76 0.00 w log perm 0.82 0.00
log dist urban −0.14 0.00 log dist urban −0.13 0.00 log dist urban −0.10 0.00
prot area −0.18 0.00 prot area −0.14 0.00 agr small 0.06 0.00
clima humid −0.03 0.01 clima humid −0.05 0.00 prot area −0.11 0.00
log dist mineral −0.04 0.00 agr small 0.06 0.00 log dist wood −0.05 0.00
log settl 0.04 0.00 soil fert 0.01 0.12 soil fert 0.02 0.03
agr small −0.06 0.00 log settl 0.03 0.00 conn ports 0.02 0.09
soild fert 0.02 0.05 conn ports 0.01 0.38 log dist rivers 0.02 0.03
log dist wood −0.02 0.04 log dist rivers 0.03 0.01 clima humid 0.02 0.05
log dist rivers 0.03 0.00 log dist wood −0.03 0.01 soil wet 0.00 0.79

log settl 0.02 0.08

eastern part of Pará State have a dominance of small farms.903

However, in Rondônia temporary crops are not as significant904

as in northeastern Pará. On the other hand, there is a sig-905

nificant pattern of permanent crops in Rondônia. Soybean906

expansion may change the statistical relationship with the907

agrarian structure as we obtained for temporary crops, but908

not the fact that these other land-use systems exist, and that909

effective policy action may take this heterogeneity into con-910

sideration.

5. Conclusions

5.1. Spatial regression and dynamic modeling 911

One of the basic hypotheses in linear regression models is that 912

observations are not correlated, and consequently the residu- 913

als of the models are not correlated as well. In land-use data, 914

this hypothesis is usually not true. Land-use data have the

Fig. 6 – Graphical comparison of main land-use factors in the Arch macro-region. Values shown are the average of
significant beta coefficients. Empty values are non-significant coefficients in any of the models for that partition.
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tendency to be spatially autocorrelated, as land-use changes915

in one area tend to propagate to neighboring regions. Spatial916

dependence could be seen as a methodological disadvantage,917

as it interferes on linear regression results, but on the other918

hand is exactly what gives us information on spatial pattern919

and structure and process (20).920

In Section 4.1, we compared the results of the spatial921

lag models with those of a non-spatial linear regression922

model for the whole Amazonia to understand how explana-923

tory factors contribute to spatial dependence. Results show924

that the spatial coefficient of the spatial lag models is sig-925

nificant and higher than 0.70 in all models, a quantitative926

evidence that corroborates of earlier assessments that defor-927

estation is a diffusive process in the Amazon, and tends928

to occur close of previously opened areas (5). Results also929

show that when using the spatial lag regression model, the930

determining factors coefficients in the regression equation931

get lower, but not in a uniform way. Connectivity to mar-932

kets and climate factors carry a larger part of the spatial933

dependence, and reinforce the diffusive pattern of deforesta-934

tion.935

One of the goals of quantifying empirically the relation-936

ships of land-use patterns and determining factors is to937

feed dynamical LUCC models. Our results indicate that, in938

areas similar to the Amazonia, with such spatially marked939

patterns, there is however a risk of using the spatial lag940

model for dynamical LUCC modeling. For instance, in the941

case of deforestation, the spatial autocorrelation parameter942

is related to the previous deforestation in the neighborhood.943

The resulting model using the spatial lag coefficients would944

have a tendency to concentrate changes in previously occu-945

pied areas, not allowing new patterns to emerge. Thus, we946

considered more appropriate to tie the diffusive aspect of947

deforestation to scenario-dependent variables such as con-948

nectivity to markets and distance to roads. New patterns949

could emerge as connectivity characteristics are changed.950

Similar considerations are presented by Overmas et al.951

(2003).Q9952

5.2. Amazonia intra-regional heterogeneity953

We conducted the spatial lag regression analysis to explore954

intra-regional differences in the relative importance of land-955

use determining factors in the Amazon, based on a cellular956

database including several environmental, socio-economic957

and political potential factors.958

The quantitative results we obtained using this method-959

ology corroborates with the hypothesis of intra-regional960

heterogeneity as stated Becker (2001): in the Amazon coex-961

ist subregions with different speed of change, due to the962

diversity of ecological, socio-economic, political and of acces-963

sibility conditions. The use of spatial regression models also964

corroborated earlier assessments about the diffusive nature965

of land-use change in the Amazon (Alves, 2002) as showed966

by the high values of the autocorrelation coefficient in all967

models. Only in the Occidental region values were slightly968

lower, indicating a less intense diffusive pattern and speed of969

change.970

Our models show the significance of several of the potential971

determining factors, demonstrating that focusing on single972

factor analysis can be misleading. It is the interaction of many 973

factors that can explain the land-use patterns in the Ama- 974

zon. And the relative importance of such factors varies from 975

one region to another, and unravels the region heterogene- 976

ity in terms of patterns and speed of change. For instance, 977

when only the Arch is analyzed, protected areas becomes 978

the second most important factor, after the deforestation 979

spatial dependence coefficient, preceding distance to roads 980

and to urban centers, indicating how they play an impor- 981

tant role in avoiding deforestation in high-pressure areas. 982

On the other hand, distance to roads is an important factor 983

in all space partitions. But our multi-factor analysis shows 984

that the heterogeneous occupation patterns of the Amazon 985

can only be explained when combining roads to other fac- 986

tors related to the organization of the productive systems in 987

different regions, such as favorable environmental conditions 988

and access to local and national markets. This provides fur- 989

ther evidence that the implantation of roads and development 990

poles in the 1970s was a first incentive to deforestation, but 991

it continued more elevated in regions that established pro- 992

ductive systems linked to the center, south and northeast 993

of Brazil (Alves, 2001; Alves, 2002). The municipality of São 994

Felix do Xingu, a current deforestation hot-spot, is exem- 995

plary of this: it has been the lead in deforestation rates in 996

the last years (INPE, 2005), although it is not served by a 997

paved road. Land market plays an important role there, and 998

also lack of State presence, but it also has a very well orga- 999

nized beef market chain (Escada et al., 2005). Our agrarian 1000

structure and specific land-use analysis results reinforce the 1001

conclusions in relation to the importance of the productive 1002

systems, as they point out the heterogeneity of land-use sys- 1003

tems adopted by different actors, and the influence of the 1004

agrarian structure on land-use pattern distribution across the 1005

region. 1006

We conclude that incorporating this heterogeneity of fac- 1007

tors, actors, land-use and productive systems are essential 1008

to a sound understanding of the land-use change process in 1009

the region, especially to subside policy decisions appropri- 1010

ated for each subregion in a non-uniform and non-misleading 1011

way. 1012
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Appendix A. Complete list of potential determining factors organized in the cellular database

Category Cellular database
variable

Description Selected variable
(adopted name for

regression analysis)

Source

Accessibility to
markets

dist non paved road Euclidean distance to nearest
non-paved road

IBGEa

dist paved roads Euclidean distance to nearest
paved road

IBGE

dist roads Euclidean distance to nearest
road

log dist roads IBGE

dist large rivers Euclidean distance to nearest
large river

log dist rivers IBGE

dist urban areas Euclidean distance to nearest
urban center

IBGE

conn sp Connection to SP (national
market) though the road
network

conn sp p Connection to SP (national
market) though the road
network considering the type
pf road

IBGE

conn ne Connection to northeast
(national market) though the
road network

IBGE

conn ne p Connection to the northeast
(national market) though the
road network considering the
type of road

IBGE

conn max Maximum connection to one of
the two markets: SP or
northeast

IBGE

conn max p Maximum connection to one of
the two markets: SP or
northeast, considering the type
of road

conn mkt IBGE

conn ports Maximum connection a port IBGE
conn ports p Maximum connection a port

considering the type of road
conn ports IBGE

Economic
attractiveness

dist wood extr poles log dist wood IBAMAb

dist min deposits Euclidean distance to all types
of mineral deposits

log dist mineral CPRMc

Agrarian
structure

agr area small Percentage of small, medium and
large properties in terms of
municipalities area

agr small IBGE

agr area medium IBGE
agr area large IBGE
agr nr small Percentage of small, medium and

large properties in terms of number of
properties in the municipalities

IBGE
agr nr medium IBGE
agr nr large IBGE

Demographic dens pop 91 Populational density in 1991 IBGE
dens pop 96 Populational density in 1996 IBGE
migr 91 Percentage of migrants in 1991 IBGE
migr 96 Percentage of migrants in 1996 IBGE
tx urban 96 Proportion of urban population

in 1996
IBGE

Technology tx trat prop Number of tractor per number
of property owners

IBGE

tx trat area plant Number of tractor per total
planted area in the
municipality

IBGE

tx ass prop Number of properties that
receive technical assistance per
number of property owners

IBGE

1027
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Appendix A (Continued ) 1028

Category Cellular database
variable

Description Selected variable
(adopted name for

regression analysis)

Source

tx ass area plant Number of properties that
receive technical assistance per
total planted area in the
municipality

IBGE

Political setl nfamilies 70 99 Number of settled families until
1999

log settl INCRAd

setl area 70 99 Area of settlements until 1999 INCRA
prot all Percentage of protected area

(any type of CU or IL)
prot all IBAMA FUNAIe

prot il Percentage of indigenous lands
area

prot cu Percentage of conservation units

Environmental fert high Percentage of soils of high and
medium fertility

soils fert IBGE

fert low Percentage of soils of low
fertility

soils wet IBGE

fert wet Percentage of soils of “varzea” IBGE
q1 temp media First quadrimester temperature

average
INMETf

q2 temp media Second quadrimester
temperature average

INMET

q3 temp media Third quadrimester temperature
average

INMET

q1 umidade media First quadrimester humidity
average

INMET

q2 umidade media Second quadrimester humidity
average

INMET

q3 umidade media Third quadrimester humidity
average

INMET

q1 precip tot First quadrimester precipitation
total

INMET

q2 precip tot Second quadrimester
precipitation total

INMET

q3 precip tot Third quadrimester
precipitation total

INMET

precip min3 months Average precipitation in the
three drier subsequent months
of the year

INMET

humid min3 months Average humidity in the three
drier subsequent months of the
year

clima humid INMET

temp min3 months Average humidity in the three
lowest temperature subsequent
months of the year

INMET

1029

a IBGE—Brazilian Institute of Geography and Statistics. 1030
b IBAMA—Brazilian Institute of Environment and Natural Resources. 1031
c CPRM—Brazilian Geological Service. 1032
d INCRA—Brazilian Institute of Colonization and Homestead. 1033
e FUNAI—Brazilian National Foundation for Indigenous Peoples. 1034
f INMET—Brazilian Institute of Meteorology. 1035
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157–166.1093

IBGE, 1996. Censo Agropecuario 1996 (Agricultural Census 1996).1094

Instituto Brasileiro de Geographia e Estatistica (Brazilian1095

Census Bureau).1096

INPE, 2005. Monitoramento da Floresta Amazônica Brasileira por1097
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2000. Amazônia Sustentável: limitantes e oportunidades para 1142

o desenvolvimento rural. In: Imazon, W.B.A. (Ed.), Série 1143

Parcerias. 1144

Soares-Filho, B., Cerqueira, G., Pennachin, C., 2002. DINAMICA—a 1145

stochastic cellular automata model designed to simulate the 1146

landscape dynamics in an Amazonian colonization frontier. 1147

Ecol. Modell. 154 (3), 217–235. 1148

Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A., 2004. Land use 1149

change modelling: current practice and research priorities. 1150

GeoJournal 61 (4), 309–324. 1151

Walker, R.T., Moran, E., Anselin, L., 2000. Deforestation and cattle 1152

ranching in the Brazilian Amazon: external capital and 1153

household processes. World Dev. 28 (4), 683–769. 1154

dx.doi.org/10.1016/j.ecolmodel.2007.06.019
http://www.obt.inpe.br/prodes/

	Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: Exploring intra-regional heterogeneity
	Introduction
	Review of previous work
	Methods
	Study area, spatial resolution and spatial partitions
	Land cover/use patterns
	Spatial database of potential determinants
	Exploratory analysis and selection of variables
	Spatial regression modeling

	Results and discussion
	Deforestation factors in the whole Amazonia
	Comparison of deforestation determining factors across space partitions
	Comparison of land-use determining factors in the Arch partition

	Conclusions
	Spatial regression and dynamic modeling
	Amazonia intra-regional heterogeneity

	Acknowledgments
	Complete list of potential determining factors organized in the cellular database
	Main determining factor maps
	References




